Skip to content

Forum in maintenance, we will back soon 🙂

Determining token c...
 
Notifications
Clear all

Determining token cost

3 Posts
2 Users
1 Reactions
468 Views
(@sivaram-bandaru)
Posts: 43
Trusted Member Customer
Topic starter
 

Calculating token cost is giving me result as none. Can you please point me to what I am doing wrong?

Main file:

import helpers


token_count=3000


costs=helpers.estimate_input_cost_optimized("gpt-3.5-turbo-0613", token_count)


print(f"Costs: {costs}")
 
Helpers is written as
import tiktoken
import openai


# Estimate cost


def estimate_input_cost_optimized(model_name, token_count):
    model_cost_dict= {
        "gpt-3.5-turbo-0613": 0.0015,
        "gpt-3.5-turbo-16k-0613": 0.003,
        "gpt-4-0613": 0.03,
        "gpt-4-32k-0613": 0.06
    }


    try:
        cost_per_1000_tokens = model_cost_dict[model_name]
    except KeyError:
        raise ValueError(f"The model '{model_name}' is not recognized.")
    estimated_cost=(token_count / 1000) * cost_per_1000_token
Result after running the code:
Costs: None
 
 
Posted : 09/11/2023 1:57 pm
Hasan Aboul Hasan
(@admin)
Posts: 1251
Member Admin
 

you forgot to add:

return estimated_cost
 
At the end of the function.
 
Here is the corrected version:
 
def estimate_input_cost_optimized(model_name, token_count):
    model_cost_dict = {
        "gpt-3.5-turbo-0613": 0.0015,
        "gpt-3.5-turbo-16k-0613": 0.003,
        "gpt-4-0613": 0.03,
        "gpt-4-32k-0613": 0.06,
    }

    try:
        cost_per_1000_tokens = model_cost_dict[model_name]
    except KeyError:
        raise ValueError(f"The model '{model_name}' is not recognized.")

    estimated_cost = (token_count / 1000) * cost_per_1000_tokens

    return estimated_cost
 
Posted : 09/11/2023 3:56 pm
(@sivaram-bandaru)
Posts: 43
Trusted Member Customer
Topic starter
 

Thank you Haasan

 
Posted : 09/11/2023 6:09 pm
Share: