Skip to content
site logo mobile

Code Snippets Library >

Customized Simpler Vectors Functions

🔑 ID:

63666

👨‍💻

Python

🕒

18/08/2024
Free

Description:

This is a customized version of a file in the Simpler Vectors Library.

 

Code:

import numpy as np
import os
import json
import enum

class SerializationFormat(enum.Enum):
    JSON = 'json'

class VectorDatabase:
    def __init__(self, db_folder):
        self.db_folder = db_folder
        self.vectors = []  # Initialize the vectors list
        self.metadata = [] # Initialize the metadata list
        if not os.path.exists(self.db_folder):
            os.makedirs(self.db_folder)

    def load_from_disk(self, collection_name, serialization_format=SerializationFormat.JSON):
        file_path = os.path.join(self.db_folder, collection_name + '.svdb')
        if serialization_format == SerializationFormat.JSON:
            self._load_json(file_path)

    def save_to_disk(self, collection_name, serialization_format=SerializationFormat.JSON):
        file_path = os.path.join(self.db_folder, collection_name + '.svdb')
        if serialization_format == SerializationFormat.JSON:
            self._save_json(file_path)

    def _load_json(self, file_path):
        if os.path.exists(file_path):
            with open(file_path, 'r') as file:
                data = json.load(file)
                self.vectors = [np.array(vec) for vec in data['vectors']]
                self.metadata = data['metadata']
        else:
            self.vectors, self.metadata = [], []

    def _save_json(self, file_path):
        data = {'vectors': [vec.tolist() for vec in self.vectors], 'metadata': self.metadata}
        with open(file_path, 'w') as file:
            json.dump(data, file)


    @staticmethod
    def normalize_vector(vector):
        """
        Normalize a vector to unit length; return the original vector if it is zero-length.

        Parameters:
            vector (array-like): The vector to be normalized.

        Returns:
            array-like: A normalized vector with unit length.
        """
        norm = np.linalg.norm(vector)
        if norm == 0:
            return vector  # Handle zero-length vector to avoid division by zero
        return vector / norm

    def add_vector(self, vector, meta, normalize=True):
        if normalize:
            vector = self.normalize_vector(vector)
        self.vectors.append(vector)
        self.metadata.append(meta)

    def add_vectors_batch(self, vectors_with_meta, normalize=False):
        for vector, meta in vectors_with_meta:
            self.add_vector(vector, meta, normalize=normalize)

    def top_cosine_similarity(self, target_vector, top_n=3):
        """
        Calculate the cosine similarity between a target vector (assumed to be normalized) and each vector in the pre-normalized matrix,
        then return the indices of the top N most similar vectors along with their metadata.

        Parameters:
            target_vector (array-like): The normalized vector to compare against the matrix.
            top_n (int): The number of top indices to return.

        Returns:
            list: Tuples of metadata and similarity score for the top N most similar vectors.
        """
        try:
            # Calculate cosine similarities directly as dot products with normalized vectors
            similarities = np.dot(self.vectors, target_vector)
            
            # Get the indices of the top N similar vectors
            top_indices = np.argsort(-similarities)[:top_n]
            
            # Return metadata and similarity for the top N entries
            return [(self.metadata[i], similarities[i]) for i in top_indices]
        except Exception as e:
            print(f"An error occurred: {e}")
            return []
Untitled design (82)

GitHub Link

✖️ Not Available

Untitled design (83)

Download File

✖️ Not Available

If you’re encountering any problems or need further assistance with this code, we’re here to help! Join our community on the forum or Discord for support, tips, and discussion.